81,334 research outputs found

    Studies of the nucler equation of state using numerical calculations of nuclear drop collisions

    Get PDF
    A numerical calculation for the full thermal dynamics of colliding nuclei was developed. Preliminary results are reported for the thermal fluid dynamics in such processes as Coulomb scattering, fusion, fusion-fission, bulk oscillations, compression with heating, and collisions of heated nuclei

    4He adsorbed inside (10,10) single walled carbon nanotubes

    Full text link
    Diffusion Monte Carlo calculations on the adsorption of 4^4He in open-ended single walled (10,10) nanotubes are presented. We have found a first order phase transition separating a low density liquid phase in which all 4^4He atoms are adsorbed close to the tube wall and a high density arrangement characterized by two helium concentric layers. The energy correction due to the presence of neighboring tubes in a bundle has also been calculated, finding it negligible in the density range considered.Comment: 5 pages, accepted for publication in Phys. Rev.

    Photon generation in an electromagnetic cavity with a time-dependent boundary

    Get PDF
    We report the observation of photon generation in a microwave cavity with a time-dependent boundary condition. Our system is a microfabricated quarter-wave coplanar waveguide cavity. The electrical length of the cavity is varied using the tunable inductance of a superconducting quantum interference device. It is measured in the quantum regime, where the temperature is significantly less than the resonance frequency (~ 5 GHz). When the length is modulated at approximately twice the static resonance frequency, spontaneous oscillations of the cavity field are observed. Time-resolved measurements of the dynamical state of the cavity show multiple stable states. The behavior is well described by theory. Connections to the dynamical Casimir effect are discussed.Comment: 5 pages, 3 Figure

    Exact renormalization group equations and the field theoretical approach to critical phenomena

    Get PDF
    After a brief presentation of the exact renormalization group equation, we illustrate how the field theoretical (perturbative) approach to critical phenomena takes place in the more general Wilson (nonperturbative) approach. Notions such as the continuum limit and the renormalizability and the presence of singularities in the perturbative series are discussed.Comment: 15 pages, 7 figures, to appear in the Proceedings of the 2nd Conference on the Exact Renormalization Group, Rome 200

    Condor services for the Global Grid:interoperability between Condor and OGSA

    Get PDF
    In order for existing grid middleware to remain viable it is important to investigate their potentialfor integration with emerging grid standards and architectural schemes. The Open Grid ServicesArchitecture (OGSA), developed by the Globus Alliance and based on standard XML-based webservices technology, was the first attempt to identify the architectural components required tomigrate towards standardized global grid service delivery. This paper presents an investigation intothe integration of Condor, a widely adopted and sophisticated high-throughput computing softwarepackage, and OGSA; with the aim of bringing Condor in line with advances in Grid computing andprovide the Grid community with a mature suite of high-throughput computing job and resourcemanagement services. This report identifies mappings between elements of the OGSA and Condorinfrastructures, potential areas of conflict, and defines a set of complementary architectural optionsby which individual Condor services can be exposed as OGSA Grid services, in order to achieve aseamless integration of Condor resources in a standardized grid environment

    Nonlocal hydrodynamic influence on the dynamic contact angle: Slip models versus experiment

    Get PDF
    Experiments reported by Blake et al. [Phys. Fluids. 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field/geometry near the moving contact line. The present paper examines quantitatively whether or not it is possible to attribute this effect to bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called ``apparent'' contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments, the variations of the ``apparent'' contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle, i.e.\ the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape, must be regarded as dependent not only on the contact-line speed but also on the flow field/geometry in the vicinity of the moving contact line

    Design and development of a deployable self-inflating adaptive membrane

    Get PDF
    Space structures nowadays are often designed to serve just one objective during their mission life, examples include truss structures that are used as support structures, solar sails for propulsion or antennas for communication. Each and every single one of these structures is optimized to serve just their distinct purpose and are more or less useless for the rest of the mission and therefore dead weight. By developing a smart structure that can change its shape and therefore adapt to different mission requirements in a single structure, the flexibility of the spacecraft can be increased by greatly decreasing the mass of the entire system. This paper will introduce such an adaptive structure called the Self-inflating Adaptive Membrane (SAM) concept which is being developed at the Advanced Space Concepts Laboratory of the University of Strathclyde. An idea presented in this paper is to adapt these basic changeable elements from nature’s heliotropism. Heliotropism describes a movement of a plant towards the sun during a day; the movement is initiated by turgor pressure change between adjacent cells. The shape change of the global structure can be significant by adding up these local changes induced by local elements, for example the cell’s length. To imitate the turgor pressure change between the motor cells in plants to space structures, piezoelectric micro pumps are added between two neighboring cells. A passive inflation technique is used for deploying the membrane at its destination in space. The trapped air in the spheres will inflate the spheres when subjected to vacuum, therefore no pump or secondary active deployment methods are needed. The paper will present the idea behind the adaption of nature’s heliotropism principle to space structures. The feasibility of the residual air inflation method is verified by LS-DYNA simulations and prototype bench tests under vacuum conditions. Additionally, manufacturing techniques and folding patterns are presented to optimize the actual bench test structure and to minimize the required storage volume. It is shown that through a bio-inspired concept, a high ratio of adaptability of the membrane can be obtained. The paper concludes with the design of a technology demonstrator for a sounding rocket experiment to be launched in March 2013 from the Swedish launch side Esrange

    Discrete Symmetries in Covariant LQG

    Full text link
    We study time-reversal and parity ---on the physical manifold and in internal space--- in covariant loop gravity. We consider a minor modification of the Holst action which makes it transform coherently under such transformations. The classical theory is not affected but the quantum theory is slightly different. In particular, the simplicity constraints are slightly modified and this restricts orientation flips in a spinfoam to occur only across degenerate regions, thus reducing the sources of potential divergences.Comment: 8 pages, v2: Minor change

    Interpolation Parameter and Expansion for the Three Dimensional Non-Trivial Scalar Infrared Fixed Point

    Get PDF
    We compute the non--trivial infrared ϕ34\phi^4_3--fixed point by means of an interpolation expansion in fixed dimension. The expansion is formulated for an infinitesimal momentum space renormalization group. We choose a coordinate representation for the fixed point interaction in derivative expansion, and compute its coordinates to high orders by means of computer algebra. We compute the series for the critical exponent ν\nu up to order twenty five of interpolation expansion in this representation, and evaluate it using \pade, Borel--\pade, Borel--conformal--\pade, and Dlog--\pade resummation. The resummation returns 0.6262(13)0.6262(13) as the value of ν\nu.Comment: 29 pages, Latex2e, 2 Postscript figure
    • …
    corecore